Parallel surfaces to translation surfaces in Euclidean 3-space
نویسندگان
چکیده
منابع مشابه
Characterizations of Slant Ruled Surfaces in the Euclidean 3-space
In this study, we give the relationships between the conical curvatures of ruled surfaces generated by the unit vectors of the ruling, central normal and central tangent of a ruled surface in the Euclidean 3-space E^3. We obtain differential equations characterizing slant ruled surfaces and if the reference ruled surface is a slant ruled surface, we give the conditions for the surfaces generate...
متن کاملEvolution of Translation Surfaces in Euclidean 3-Space E3
Geometry and kinematics have been intimately connected in their historical evolution and, although it is currently less fashionable, the further development of such connections is crucial to many computer-aided design and manufacturing. In this paper, the evolution of the translation surfaces and their generating curves in E3 are investigated. Integrability conditions of the Gauss-Weingarten eq...
متن کاملPolynomial Translation Weingarten Surfaces in 3-dimensional Euclidean Space
In this paper we will classify those translation surfaces in E involving polynomials which are Weingarten surfaces. Mathematics Subject Classification (2000): 53A05, 53A10.
متن کاملTranslation surfaces according to a new frame
In this paper we studied the translation surfaces according to a new frame called q-frame in three dimensional Euclidean space. The curvatures of the translation surface are obtained in terms of q-frame curvatures. Finally some special cases are investigated for these surfaces.
متن کاملTranslation invariant surfaces in the 3-dimensional Heisenberg group
In this paper, we study translation invariant surfaces in the 3-dimensional Heisenberg group $rm Nil_3$. In particular, we completely classify translation invariant surfaces in $rm Nil_3$ whose position vector $x$ satisfies the equation $Delta x = Ax$, where $Delta$ is the Laplacian operator of the surface and $A$ is a $3 times 3$-real matrix.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
سال: 2015
ISSN: 1303-5991
DOI: 10.1501/commua1_0000000732